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A universal algorithm for the calculation of the density-of-states, partition, and other thermodynamic functions
of internal one-dimensional nonharmonic degrees of freedom is developed and analyzed. The algorithm is
exact in the classical limit and results in analytical formulas for many types of potentials. Quantum effects
are taken into account via the inverse Laplace transform of the classical partition function corrected for quantum
effects by the method of Pitzer and Gwinn. Explicit formulas are reported for a variety of selected potential
types (double-well inversion, quartic oscillator, etc.). An extension of the classical treatment to multidimen-
sional potentials is described.

I. Introduction reported an algorithm for calculating the density-of-states
Modeling of many classes of chemical reactions requires a function of a system consisting of independent oscillators, free

knowledge of the density-of-states, sum-of-states, and partition "otors, and one-dimensional hindered rotors via a numerical

functions of the involved molecules. The established approach nversion of the overall partition function. In its quantum form,

is based on creating a model of the molecule consisting of a the algorithm uses the approximation of Truktao the quantum
collection of harmonic oscillators and free one- and two- Partition function of a one-dimensional hindered rotor. Uni-

dimensional rotors. The density-of-states and sum-of-statesVersal analytical formulas for sums and densities of states that

functions of such an idealized molecule are easily calculated Included corrections for quantum effects based on an inverse
using, for example, the BeyeSwinehart algorithnd2 The Laplace transform (IL_'I_') of the E’ltzefGW|nn approximatiotf
presence of significantly nonharmonic degrees of freedom sucht© the quantum partition function were recently reported by
as hindered rotations, inversions, quartic oscillators, etc. com- Knyazev? , ,
plicates the calculations. If all individual energy levels of a [N th? current .work, we report a universal algorlth.n.w for
nonharmonic degree of freedom are known, they can be includegcalculating de_nsmes _and sums of state;, as vyell as partition a_nd
via the Steir-Rabinovitch approach.However, in spite of the ~ thermodynamic functions, for any one-dimensional nonharmonic
existence of efficient algorithnisjetermining individual energy ~ degree of freedom. The algorithm is exact in the classical limit
levels for many types of potentials proves to be impractical since @nd results in analytical formulas for many types of potentials.
density-of-states functions are, generally, needed at very highCorre_ctlons fO_r quantum_effe_cts are mtrqduced via the ILT of
energies (16-10° cm™Y) corresponding to large quantum _the Pltzt_aﬁGwmn approximation. In secuon_ll, the algorithm _
numbers. is described for the general case of an arbitrary nonharmonic
The problem of determining densities of states of nonhar- potent?al. In section_ Il, several specific cases of n_onharmonic
monic degrees of freedom has been recently reviewed by Forst, Potentials are examined and corresponding analytical formulas
Troe® and Ming et af. ForsP developed an algorithm for e derlveo_l. Imp!lcatlons for chemical kinetics modeling are
computing sums of states for a collection of nonseparable discussed in section IV.
anharmonic oscillators with known individual energy levels, as
well as a fast approximate algorithm for determining densities
of states via a numerical Laplace transform of the overall  The partition function of any system can be considered as a
partition function. Algorithms were reported for estimating Laplace transform of the corresponding density-of-states func-
classical-limit anharmonic densities of states based on simplifiedtion p(E) by definition
models of several stretch potentials (THoand on microca-
nonical sampling of the classical phase space (Ming é}. al. o0
Quasi-classigal gexpressions for [(?iensity-pand (sumg-of%states QW) = fO P(E) exp(=fE) dE = Lp(E)]
functions were derived for the Morse potential on the basis of
the explicitly known vibrational energy levels (ref 6 and Wherep = (ksT)™"is an inverse reduced temperature &his
references therein). The specific case of the one-dimensionalthe energy. Thus, provided that the dependence of the partition
sinusoidally hindered rotor has received much attention (refs function on temperature is known, one can obtain the density-
8—12 and references therein). Knyazev etlatleveloped  Of-states function by inverse Laplace transform (ILT):
analytical formulas for the density-of-states and sum-of-states
functions that are exact in the classical approximation. Forst p(E) = Lfl[Q(ﬁ)]
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Il. General Case
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II.1. Classical Limit. Densities and Sums of Statels. the
classical limit, the partition function of a system with Hamil-
tonianH(p, ) is obtained by an integral over phase space

Qe =1/ dp [ dpexp(-pH(p, @)  (1.1.1)

wherep is the momentum and; and g, limit the range of
coordinateq values. Describing the Hamiltonian of a one-
dimensional degree of freedom as

2
H(p, ) sz

(« is the reduced mass aM{q) is the potential energy function)
and evaluating the integral over momentpmwe obtain

+V(q)

a =i ] o daemtAva)

If an arbitrary “reference” value aff = qp is chosen, one can
express potential energy as a function of the *“reduced”
coordinate = g/qp and the expression fdpc, acquires form

‘qu 1/2
Q=[5 i dE exp(-pV(E) =
1/2
B3 e d PPV = Quorlh) Quulf) (1.1.2)
where

h2
8r°uc

(11.1.3)

is an “effective” rotational constar@rot(8) = [#/(BB)]*2, and

Qo) = o [ dE exppU(E)  (1.1.4)

Mathematically, this is equivalent to having two degrees of
freedom, one pseudo-rotation with the partition funct@r(5)

and one “shape-related” degree of freedom with the partition

function Qsp(B), which is determined by the shape of )
potential.
The density-of-states function of pseudo-rotation is given by

1

= (I1.1.5)

Pror(E) =

If the density-of-states function of the shape-related degree of

freedom,psH(E) = L~ Qsn(B)], is known, the overall density-
of-states functiorpc (E) can be obtained by a numerical or
analytical convolution:

peL(B) = [, BrorlE — € Bai(e) de =
j-E Psple€) de
VB0 VE—e

Determination of thggs(E) Function. The potential energy
profile is divided into several segments with monotoRi(g)
dependencies (Figure 1). Thegevariable intervals of the
segments are bound By,in, Emax and the extrema of the(&)
function at several values @&. One can now represent the
integral in (11.1.4) as a sum of integrals over the individual
intervals (indexed by k& i < N)

(11.1.6)
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V / arbitrary units

i=4

__)
S \g / arbitrary units  Gmax =
| \ /’
| Interval with i = 2 /
|
l 3l = P ) //
|
V min V V‘max

Figure 1. Upper plot: arbitraryv(&) potential energy function. The
axis is divided into four segments (numbered by= 1—4) with
monotonicV(&) dependencies. Lower plot (segment 2): corresponding

inverse&;(V) function and resultarﬁiSH(V) = [1/(27)]-|d&/dV| depen-
dence (a component of the overa§(V) dependence, see text).

~ 1N
Qs(B) = —Z J dé exp=pV(&) =
2k
Vmax(mm)
_Zf |n(ma><)
where&;(V) is an inversd/(§) function in theith interval. Again,
the limits of integration ove¥ are determined by the extrema

of V(£), V"™ and V"
For each interval, we define the function

Ps(V) = Dsu(E) =

)
exp(=pV) (II.1.7)

i‘% V_min<V<V_max
davl® . : (1.1.8)
0, ERVALLAVA-R Ve
Substituting (11.1.8) into (11.1.7), exchanging integration limits
for intervals where W(&)/ds < 0, and extending them from zero
to infinity, we obtain

N
Qsr(B) = Z j(‘)deﬁ;SH(\/) exp—pVv) =
N
Jo M3 Ps(V)] exp(=pV) (11.1.9)

which is equivalent to a Laplace transform of th&'[, 55, (V)]
function. Therefore, the density-of-states functigsy(E) =
L~ Qsn(B)] of the shape-related pseudo-degree of freedom is
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given by the sum of individuaf)iSH(E) terms, which are, in
turn, determined by the&ddV derivatives (formula 11.1.8):

N
Ps(E) = ZBSH(E) (11.1.10)

This (in many casesanalytica) psH(E) dependence can thus
be easily determined for any(&§) potential. Then it can be
analytically (preferred) or numerically convoluted (formula
11.1.6) with the “pseudo-rotational” density-of-states function
proT(E) to yield the overall classicgic (E) density-of-states
function.

It is interesting to note that for any potential energy well the
psH(E) function is determined by the energy dependence of the
“width” (the distance between the left and right “walls”) of the
well. This can be shown by a variable transform:&ifand
&4+, form the left and right walls of the well, by defining the
width w = &i+; — & and “center’c = Y5(&i+1 + &) one obtains
for the shape-related density-of-states function

~ ~ 1
BO)+ i) =5
which is independent of. The same holds for a complex
potential consisting of multiple connected wells. Therefore, any
“tilting” or other distortion of the potential that does not change
the width vs energy dependence will not result in any change
of the classical density-of-state function.

Thermodynamic and Partition FunctionsThe partition
functionQc(B) is given by the product d@rot(5) andQsn(p).
If the integral in (11.1.4) or (11.1.9) (which is the same) can be
evaluated analytically, the problem of calculati@g (5) is
solved. In this case, first and second derivative®gi(3) can
be determined analytically and thermodynamic functions of the
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I1.2. Correction for Quantum Effects. Partition, Density-
of-States, and Sum-of-States Functiori&gitzer and Gwin#f
suggested that the classical partition function can be corrected
to account for quantum effects via a multiplication by the ratio
of quantum Q°) to classical QFf) partition functions of a
corresponding harmonic oscillator (i.e., an oscillator with a
frequency derived from the curvature at the bottom of the
nonharmonic potential):

HO

_ Q
Qo= Qoo
CL

(11.2.1)

Isaacson and Truhl&rhave demonstrated that such a correction
for quantum effects can be applied with good accuracy to a
variety of potentials with different functional forms.

Formula 11.2.1 can be used to obtain the density-of-states
function via the ILT ofQq(T). Such an approach to determining
the density-of-states function, however, should be used with
caution, since the approximation of (11.2.1), while describing
the temperature dependence of the quantum partition function
with reasonable accuracy for a variety of systems, is not derived
from any fundamental principles and, therefore, does not have
a physical meaning. It is only a phenomenological expression
providing for a smooth transition from the low-temperature
region on one side, where the rafie, /Qp. is equal to 1 and
the partition function of a system can be described@y,
and the high-temperature region on the other side, fe
approachengf and the partition function is well approxi-
mated byQcL. Agreement between the exact partition function
and that given by (11.2.1) can be improved if the exact energies
of the zeroth and first vibrational levels are known. In this case,
ng can be calculated using a vibrational frequency corre-
sponding to the actual 6> 1 transition, and values of the

shape-related pseudo-degree of freedom can now be evaluategartition function relative to the classical potential minimum

via formulas

N dInG

internal energy  Ug, = —N, %(ﬁ) (1.1.112)
N d®In G

heat capacity C,gy= RﬂZ%H@ (1.1.12)

entropy S, = R(In Qs(B) — ,Bdl%ﬁs'*(ﬁ)) (11.1.13)

where Np is Avogadro’s number an® is the universal gas
constant. They can now be combined with the thermodynamic
functions of the “pseudo-rotation” calculated via standard
methods to give the overall thermodynamic functions.

If analytical evaluation 0@sy(B) is impossible, the partition

function and its first and second derivatives needed to calculate

thermodynamic functions via 11.1.3113 can easily be obtained
via numerical integration:
QsilB) = [y PsE)e = dE
Qi) _
dp
d2 QSH(ﬁ)
dp?

S Epsy(B) e PFdE (11.1.14)

= ["E’ps(E) € F dE

can be obtained with higher accuracy by using the exact energy
of the zeroth level?

For a nonharmonic degree of freedom, three components of
(I1.2.1) are obtained as followsQc, is given by (11.1.2),

&= (twp) ™", and
QE° = exp(—Y,wp)(L — exphwp)) * (11.2.2)

where h is Planck’s constant and is the frequency of the
corresponding harmonic oscillator. Here, the bottom of the
classical potential is taken as an energy reference point for all
partition functions. The density-of-states functjesfE) is given

by the ILT of Qg(f):

11 Q(H?O(ﬁ) _ -1 HO
Po(E) =L 7 QcL(B)—ig | = hvL "1AQcL(B) Qq (B)]
Qe (B)
(1.2.3)
The sum-of-states functioWg(E) is given by the expressiéh
B
L 1Qcu(8) QQ°(A)] (11.2.4)

Wo(E) = [ pole) de =L~

Since the quantum density-of-states function of a harmonic
oscillator
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N(E)
PRO(E) = LQR°(A1 = Y O(E — hw(i + 1))  (1.2.5)

Analytical form of 7 (E),
formulas 11.1.8 and 11.1.10

whereN(E) = int([E/(hw)] — (1/2)) (int(xX) means integer part),
we can obtain via the convolution formula

Numerical
convolution

with 7, (E),

formula I1.1.6

If convolution
with 7, (E)

can be done
analytically

N(X)
W,(E) = hw ﬁ)EpCL(E —x)Y o(x — hw(i +1,)) dx =

N(E)
hw'S pe (E — hw(i + '7,)) (11.2.6)

For any functionF(B) the ILT of BF(B) is given by®* Analytical form of p_ (E) Numerical form of g, (E)
LBF(B)] = f'(E) +(0) (E), wheref(E) = L [F(8)] \ /
as can be checked via integration by parts. Using this, (I1.2.5) Analytical or numerical form
for pg (E), and the convolution formula, we can obtain for the of Wy(E), formula 11.2.6
guantum density-of-states function
Po(E) = v [[Tpe (E = X) + O(E = X) pe ()] x Y
NGO 0 NE) Numerical form of pg(E),

formula I1.2.8

O(x — hu(i + 1)) dx=hw'y [pi (E — hw(i + 1,)) +
= = Figure 2. Schematic algorithm for calculating a density-of-states

pc(0) O(E — hui + 1/2))] (11.2.7) function (section II).

Analytical form of 5, (E),

wherepg, (E) is the first derivative of thec,(E) function. formulas TL1.8 and 0 1.10

In most practical applications, in calculating densities of states
and performing numerical manipulations of related functions
(e.g., solving master equatiifor unimolecular reactions), the
energy scale is divided into an array of energy bins of small
size, and continuous functions are replaced with arrays. In such

If analytical Numerical

cases, to avoid problems associated with singularitiegdE) _form of integration,
ando-functions in (11.2.7), it is advisable to calculate the value 0 (B) can formula IL.1.14
be obtained

of the density-of-states function for each energy bin as an
increment of theME) function between the upper and lower
borders of the bin divided by the bin width:

OWL(E)
po(E) = 3E (11.2.8) Analytical forms of Numerical forms of

0., (8). 0., (8). 2z, (8) 0..(8). 0, (8), 0L, (5)

Since the classical partition function is given Q¢ () =
Qrot(B) QsH(B), one may choose to apply the above “quantum
correction” formalism to the shape-related pseudo-degree of
freedom first and then include the pseudo-rotatioQabr(5)
and prot(E) functions.

For some forms of potentialpc (E) may decrease with
energy. This will result in nonmonotonic behavior \bk(E)
obtained from (11.2.6). Such nonmonotonic behavior corre-
sponds to negative values of the density-of-states funpti(), Thermodynamic and partition
which is physically meaningless. Fortunately, these negative functions: U(B), S(B), Cv(f), Qo(B)
values (an artifact caused by applying ILT to the Pitz8mwinn !
approximation) are usually eliminated from the overall density- Figure 3. Schematic algorithm for calculating partition and thermo-
of-states function of a molecule if rotational degrees of freedom dynamic functions (section I).
are included by a convolution. If such rotational degrees of integrating the classical density of states with a very large step
freedom are not present, one needs to correct WREE) size (step size equal tw).
dependence by smoothing or “straightening” the sections of The above overall algorithm for obtaining the density-of-states
Wiq(E) with negativepo(E) (see ref 8 for an example of using and sum-of-states function is presented in Figure 2 in a
classical expression for smoothing at high energies). One canschematic form. The algorithm for calculating the partition
note that the general large-scale behavior of classwal (E)) function is shown in Figure 3.
and quantum\{g(E)) sum-of-states functions are very similar Thermodynamic FunctionsThe partition function corrected
since calculating the sum in (111.2.6) is almost identical to for quantum effects is given (1.2.1) by

Formulas
11.2.10
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o (B)

QolB) = 505)

QCL(ﬁ) = hVﬁQSH(IB) QROT(ﬁ) ng(ﬁ)

(11.2.9)

In this formula the choice of reference energy conforms to that
made in calculatingg ©(8). Using the additivity property that
follows from formula 11.2.9, thermodynamic functions can be
calculated by combining those of (1) a harmonic oscillator with
partition [unctioano(ﬂ), (2) a pseudo-rotation with partition
function Qrot(f), and (3) another pseudo-degree of freedom
described by the “partition functionhp5Qsn(8)]. Thermo-
dynamic functions of the harmonic oscillatas{°(3), S1°(5),

C'°(B)) and pseudo-rotationUgor(8), Skot(B), Cvrot(B))
can be obtained by standard meth&tisNoting that

1 QSH(ﬁ)

ﬁ(ln[hvﬁQsH(ﬂ)]) gt Oer(B)
& 3 _ B (PP 1
dﬂz(m[hVﬂQsH(ﬁ)]) N7 (QsH(ﬂ)) p?

and expressing thermodynamic functions via the partition
function derivatives (see formulas 11.1:213), we obtain for
the one-dimensional degree of freedom under consideration

internal energy

U(B) = Urorl) + U"°(3) - { 5t gz:g]
entropy  SB) = SorlB) + SOB) +
R{In[hvﬂQSH(ﬂ)] -1- ﬁgz:g} (11.2.10)
heat capacity  Cy(8) =C,, ROT(ﬁ) + CCO(ﬁ) +

LB\
Fe{ﬂ 3slf) (QSH(ﬁ)) 1]

The shape-related partition functi®sy(8) and its first and
second derivativegQs,,(3) and Q< (B), can be obtained either
analytically or numerically (11.1.14).

This algorithm for calculating thermodynamic functions is
presented in Figure 3 in a schematic form.

I1.3. Extension of Classical Treatment to the Multidi-
mensional Case. Let us consider armN-dimensional system
described by a Hamiltonian with separable kinetic energy part

N p2
H(p,a) = ) — + V()

(11.3.1)

where V@) is an infinitely bound potential such that lgn-..V(q)

= oo (p andq are multidimensional generalized momentum and
coordinate). By choosing arbitrary “reference” vectgs,
defining the reduced coordinate (& = q/qa, V(@) = V(q)),
and performing an integration over momenta in a way similar
to that used in section 11.1, we obtain for the multidimensional
classical partition function

J. Phys. Chem. A, Vol. 102, No. 46, 1998171

j— 1 j—
Qu(B) = e J dp dq exp—p H(p, a)) =

12 1

o) daexp(-pV@) =
QROT(ﬂ) QSH(ﬂ) (“32)

whereQrot(B) is a rotational partition function of a collection
of N one-dimensional pseudo-rotors with rotational constants

B: given by (11.1.3), and shape-related partition funct@s(5)

is given by

T

Bf

~ 1 ~ ~
Qe(p) =5 [ ddexp-pv@)  (11.3.3)
We now define a generalized energy-dependent width of the
potential energy functiov(q)

W(E) = [H(E - V(§)) df

where integration is performed fromoo to +oo in all dimen-

sions andH(x) is a Heaviside step function. ThigE) function

can also be described as an area of the reduced coordinate space
contained inside the potential well at a particular endfgyhe

first derivative of thew(E) function is given by

(11.3.4)

dW(E) = [6(E — V(@) dg (1.3.5)
Defining
dw(E
BoH(E) = o o) (13.6)

and using (11.3.5), we see that

dwi
Jipeule) expt-pe) de = o [F exp-e de =

z_lnffdéf dd o(e — V(6)) exp(—pe) =
L[ da exp(-AV@) = Qsil) (13.7)

Therefore, the functiorpsy(E) of (11.3.6) determined by the
dependence of the generalized width of potential (i.e., the
coordinate area bound by the potential energy well at a particular
energy) on energy has the meaning of the density-of-states
function of the shape-related pseudo-degree of freedom, i.e.,
the same as in the one-dimensional case (section II.1).

Thus, in a multidimensional case, the classical density-of-
states function can be determined by a method that follows the
same general algorithm described in section II.1. First, one
determines (in many cases, this can be done analytically) the
psH(E) function via the derivative of thev(E) dependence.
Second, to obtain the overall classical density of states, the
psH(E) function is convoluted (analytically or numerically, first
part of formula 11.1.6) with the density-of-states function of
pseudo-rotation$rot(E), which can be found using standard
formulas (see, for example, ref 18).

[ll. Specific Cases of Individual Nonharmonic Potentials

_In this section, analytical formulas fgisn(E), pcL(E), and
Qsu(B) are derived for several types of nonharmonic potentials.
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hvxpe (V)
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VIV,
Figure 4. Upper plot: quartie-quadratic (formula 111.1.1, solid line)
and cos-tar? (formula 111.2.1,y = 1, dashed line) potentialX-axis:

& for quartic-quadratic andR&/ for cos—tar? potentials (different

scales are chosen to yield the same curvature at the potential bottom)

Lower plot: Classical density-of-states functions relative to that of a

corresponding single harmonic oscillator. Lines are the same as in the

upper plot.

In most cases, these formulas involve special functions that can

be easily computed using available numerical methods (e.g.,
ref 20).

I1.L1. Quartic —Quadratic Double-Well Potential. A
potential energy function of the typ&q) = a¢* — bc? (a, b >
0) is frequently used in spectroscopy to describe inversion and
ring-puckering?® Expressed via parametel (the barrier
between two connected wells) arwg (coordinate of energy
minimum), the potential energy function acquires the form
(Figure 4)

V=VyE-1p =3 (I11.1.1)

Qo
Since the potential is symmetric, only t§e> 0 region will be
considered and the obtained derivatives will be multiplied by 2
to calculateps,(E). Two branches of(V) and the corre-
spondingV(&) dependencies need to be considered:

1. i=1. 0<£&<1, V)= — VXO
0<V() <V,
2. i=2. E>1, EV)= VXO 0<V(§)

Knyazev and Tsang

Taking the derivatives, we obtain for thgn(E) function

Ps(E) = psi(E) + pay(E) =
1 1 H(L — )

Vo o1+ Ve et - va)

whereH(x) is a Heaviside step function. If the energy scale is
divided into an array of energy bins, for each energy®is(E)

is best calculated (see formula 11.2.8) as a increment of the
corresponding sum-of-states function

(I1.1.2)

Vo

We(E) = [} Bpf) dx =

%[«/1+«/E— H(L — V1 — Ve

The overall classical density-of-states function can be calculated
via an analytical convolution (formula 11.1.6)

£ PsH(X) dX
B(E — X)

where the rotational constaBtof the pseudo-rotation (formula
11.1.3) is related toVp and the harmonic frequenay derived
from the curvature at the bottom of the potential via the
expression

pcl(B) =

1%
4

dt

BV, =
Using (I11.1.2) and substitutions = (Vo) ¢ = (€)¥? =
b
+
J Vig =@ +i+y
f“f H(1 — t) dt
0

(E/Vo)*2, one can obtain for thec  (E) function
Ve — Y@+ - t)‘

1|

27, /BV|
These integrals can be evaluated separatelypferl andg >
1 regions giving (Gradshteyn and RyzRtkeq 3.131)

B =

PcL

PCL(Ef =
7 /BVV1+ ¢ v Vite
Flarcsi 1 , p<1
/ 1 T (p)
————|Fl|arcsi oAl =L+
/B, ( 1 + @ 2¢
n/—2_ /1+_<o) -
F(arCS| 1tq 20 )’ @

whereF(x, y) is an elliptic integral of the first kind (as defined
in ref 22). This functional form of the classical density-of-
states function is illustrated in Figure 4.

Unfortunately, an analytical formula fd@sp(3) cannot be
derived. Therefore, one needs to use numerical integration
(formula 11.1.14) to obtain the partition function derivatives and
thermodynamic functions.

The first 16 exact energy levels of the quartiquadratic
double-well potential have been tabulated by L&&fer a wide
variety of potential parameters. These tabulated values are used
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30 T T T T its range of reduced coordinagds confined to the intervgk|
<y + 1, which is more realistic than an unrestricted potential
since such degrees of freedom as inversion and ring-puckering
25 L 4 are necessarily restricted in coordinate.

Following the same general path of derivation as in the case
of quartic-quadratic potential

20 2V

&)= arcco{v0 1), 0=<1§l=1, 0=V=YV,

2 [V
(V) = % arctar( \?9/2

Taking the derivatives, we obtain for ttgn(E) function

+1, 1<|gl<y+1,

10 V=0

i o) = Fy(E) + (B = e B,
pPsH(E) = p [ B ————
SH SH SH 2 EV,— B
0 | 1 { 1 2 V
0 500 1000 1500 2000 %\/:’ (I1.2.2)
E/cm” TE+VyH) Y E

Figure 5. Plot of the sum-of-states functions for the quartipiadratic . L . .
potential obtained at different levels of approximation. The classical Where H(x) is a Heaviside step function. For the classical
approximation W (E), smooth curve, lower line) and classical density-of-states function we can obtain (ref 22, eqs 3.131 and
corrected for quantum effects via the ILT of Pitz&winn approxima- 3.147)

tion (Wo(E), complex nonmonotonic dependence, upper line) are

compared with the exa®W(E) dependence obtained from the tabulated £ Pap(X) dx
energy levels reported by Lagfddstepwise lines superimposed over pcL(BE) = SH
both upper and lower lines). The values/#(E) and the corresponding 0
exact W(E) function are shifted upward by 5 units to avoid plot

congestion. Parameters of the quariigiadratic oscillator usedvp =

f H(V, — X) dx N
VB( ® 72 /BX(V, — X)(E — X)
yZ\/_O V, dx

1102 cml, go = 1 A, u = 3.3 amu. The value dfiv = 283.1 cn?! =

used to calgﬂlatWQ(E)ﬂvia (11.2.6) was obtained from the tabulation ﬂ) 7t2(Voy2 + X)4/BXE — X)

of Laané&? (energy of the 0— 1 transition). ’ E

here to compare the results of the current approach with the 2K( VO) E<V,
exactW(E) dependence (Figure 5). The sum-of-states function, T, =

W(E), is chosen for the comparison because the density-of-states Y + 7 BVG (11.2.3)
function (o(E)) is discrete in the exact quantum case (a sequence m Y o
of o-functions), is continuous in the classical approximation, T/ B( o) ZK(\/Z))

and has both discrete and continuous components in the classical E E>Vo
approximation corrected for quantum effects via the ILT of the 7/BE

Pitzer-Gwinn approximation (section 11.2, eq 11.2.7). At the i

same time W(E) is always continuous, which simplifies the
comparison. As can be seen from Figure 5, both the classica
(WeL(E)) and classical corrected for quantum effedigy(E))
functions follow the general large-scaM/(E) dependence
obtained from exact energy level3Vo(E) provides a better
(almost exact) stepwise representation at low energies but
displays nonphysical behavior (nonmonotonic growth) at higher y
energies. Methods of correcting such nonphysi¢é(E)
dependencies are discussed in section 11.2 and ref 8. W (B) = —L(«/E + Voy - \/Voy ) +

I1.2. cos—tan? Double-Well Potential. We propose here
another formula to describe a potential energy function of a E E
f 1- Vo K Vo
VO
-1+ cos(d)), 0=<|§=1 4 [E_[ /Mo E>V
V(E) = (11.2.1) = BEW E/ 0

double-well system
Vo tarf{3 (6~ 1)), 1< gl <y +1

|Where the rotational constaBtof the pseudo-rotation (11.1.3)
is related tovy and the harmonic frequeneyderived from the
curvature at the bottom of the potential via the expression
(BVo)Y2 = (hw)/x.

The corresponding classical sum-of-states function is given

E<V,

Here K(x) and E(x) are complete elliptic integrals of the first
where& = g/qo andqp is the coordinate of the potential energy and second kind, respectively (as defined in ref 22). This
minimum. The potential described by (l11.2.1) (Figure 4) functional form of the classical density-of-states function
depends on three paramete¥s, (qo, andy) and thus is more (l11.2.3) is shown in Figure 4 together with that obtained for
flexible than the quartiequadratic potential of (Ill.1.1). Also, the quartie-quadratic potential.



9174 J. Phys. Chem. A, Vol. 102, No. 46, 1998

An expression for the partition function (and its derivatives)

of the shape-related pseudo-degree of freedom can be derived

analytically by taking integrals in (11.1.14) (ref 22, egs 3.364.1
and 3.466.1)

ST

QSH(ﬁ) =
L expvgy?) erfely Vo)

Qi) =5, @ p( ﬂVo)[ (ﬁ;/O)_h)([%))] '
V%Voexp(gvoyz) erfc(yy/BV, _%2&
i S )
Vo' : &)\/Eﬂ_ﬁ
7 N pr - paN pr

wherelg(x) andl1(x) are modified Bessel functions and exc(
is the complementary error function.

BVo

Knyazev and Tsang

V1+ 40E — 1)
2v/1+ 40E
(1 + 4oE)"*

(111.3.4)

{
pe®=1,/2

where the rotational constaBtof the pseudo-rotation (11.1.3)
is related toa. and the harmonic frequency derived from the
curvature at the bottom of the potentialia the expressioB

= [a(hw)?)/4.

An expression for the overall partition function and that of
the shape-related pseudo-degree of freedom can be derived
analytically by taking the integral in (11.1.4) (see ref 22, eq
3.469.1)

B
=" g) s
Q. (B) = i)j(s_a) K.y, Sa) Z:ziﬂ 1/4(&1) (111.3.6)

In the limiting cases of low energies, low temperatures, and

The overall classical partition function can thus be expressed smalla, (111.3.4—111.3.6) reduce to the classical density-of-states

as

Qu(P) =

o 22
y expBVyyd) erfc(y\/ﬂ_\/o)]

111.3. Single-Well Quadratic —Quartic Potential. A po-
tential energy function of the typé#(q) = aq* + b? (a, b > 0)

1
v B

and partition functions of a harmonic oscillator

1

lime_qpc (E) = lim,_qpc, (E) = [

lim Qe (B) = lim,—Qcr(B) =

hvﬁ

Ill.4. Quartic Oscillator. The potential energy function of

is used in spectroscopy to describe anharmonicity of vibrational & quartic oscillator (Figure 6) is given by

modes. ThisV(q) dependence can also be written in the
following forms

V() = qu 44 %qz(uak?qz) (11.3.1)

wherex = ok2 Defining qo = [2/(ak)]*2 = [(2K)/«]*? and &
= g/qo we obtain

_E L2
V&) =2(1+8) (111.3.2)

Inverting this formula we obtain (onl > 0 needs to be
considered since the potential is symmetric)

EV) = VI F dav —

V2
o

/2(1+ 4aE)(V1 T 40E — 1)

(11.3.3)

psH(E) =

The overall classical density-of-states function is given by (see

convolution formula 11.1.6)

a E dx

V2B \J(E — (1 + 400)(VI + dax — 1)

pcl(B) =

V=bd' = V& (11.4.1)

where the dimensionless coordinale= g/qo (qo is chosen
arbitrarily). One thus obtains

~ _ 1
pSH(E) = W (|||.4.2)
1
K_
pa®=—"— ) = (ﬁ) i
4aVB O WNE — x  av/2B(V,E)Y
4
2 1 (L
h bEK(\/E) (11.4.3)

(ref 22, eq 3.152.3) whetgis given by (11.1.3)u« is the reduced
mass, andK(x) is complete elliptic integral of the first kind (as
defined in ref 22). This energy dependence of the classical
density-of-states function is illustrated in Figure 6. The sum-
of-states function equals

N E=E
Wer(B) = 50 TK(TZ)

(I1.4.4)

The integral can be evaluated (ref 22, eq 3.131.5) by using the Partition functions are obtained by Laplace transform of (111.4.2)

substitutiont = (1 + 4ax)Y2 to obtain

and multiplication byQrot(5)
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V= Zk(;gtanz(ﬂq) Votanz(%) (I11.5.1)

JT

whereVy = (2k0§)/:r2 and & = g/qo reduces to a harmonic
oscillator with potentiaV(q) = (kg?)/2 at low values ofj (and,
correspondingly, low energies). However, unlike that of a
purely harmonic potential, the function of (111.5.1) is restricted
in the q coordinate § < qo, £ < 1), which results in more
sparsely placed energy levels at high energies. Such potential
may be suitable for describing certain types of bending
vibrations, which, being almost harmonic at low energies, are
restricted in coordinate owing to steric hindrances.

Following the route of derivations described in section Il (and
noting that formulas are very similar to those used for the second

4 part of the cos-tar? potential, section I11.2), we obtain
Vo 1
N
O
N A (E) 1 where 8=’ (11.5.3)
B P e — = 9.
S === T A /BE+ VY 7V,
0.75 1 = —

(v is the frequency derived from the curvature at the bottom of
0.5 4 the potential), or

0 1 2 3 Vo

V/hv pCL( B)= E+ V

Figure 6. Upper plot: harmonic (solid line), t&r(formula 111.5.1,

dashed line), and quartic (formula 111.4.1, dashed-and-dotted line)

potentials. Parameters of individual potentials are selected to yield the Q ex \/.) erfe(./BV 1.5.5

same frequencyv(= 300 cnt?) derived from the curvature at the SH('B) P6 o Wh o ( )

potential bottom #,—.; = 300 cn1? for the quartic potential). For the

tar? potential,go = 1. Lower plot: Classical density-of-states functions

relative to that of a corresponding harmonic oscillator. Lines are the Qg (8) = 4 /A expBV,) erfcy/fVy) =
same as in the upper plot. 7B

V,
r(%) h—lv, /%Oexp(gvo) erfc(/BV;) (11.5.6)

(111.5.4)

Qsi(B) = W (111.4.5) 1
Q) = ’exp(BVO) erfe(y/BVo) — \/W] (111.5.7)
Il DO .
Qe () =4vg’4ﬁ3’4 Vs N h (111.4.6) V A (B) =
The parameters in formulas 111.4.3-6 can be expressed via the 7 | POV erfc(J[W) + m AV, ’_nﬁ (11.5.8)

frequencyvy-—1 of the 0— 1 transition (which, for a particular
molecule, may be known from spectroscopic data) using the The pc, (E) dependence is illustrated in Figure 6.
parametrized energy levels calculated by L&AAEy, = l11.6. Sinusoidally Hindered Rotor. Formulas for the

2.7391h¥(2u)~23) partition, density-of-states, and sum-of-states functions of a one-
dimensional rotor hindered by a sinusoidal potential

_0.8885
pcL(E) = ST VRT Vo
(vo-0) V=21~ cosfd) (111.6.1)
W (B) = 1.184‘(h E )3/4 have been reported befdté:4 For completeness, we present
Vo1, here expressions foQsn(5), Qsy(B), and Q¢(B), needed to
calculate thermodynamic functions:

_1.0889

Q) (hvy_.8)¥* Qs(B) = 1o(1Vo) exp(="1Vo) (11.6.2)

Q'SH(ﬁ) =
I.5. tan? Oscillator. The one-dimensional potential 1 1 1 1
energy function of the form (Figure 6) 13Vo exp(="1AVo)l11(1AVo) — 1o(12BVo)] (111.6.3)
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10+

Q/Q™°
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0.0
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(4E,,/R) /K

250 -

1000K/T

Figure 7. Temperature dependencies of partition functions (upper plot,
relative to corresponding harmonic oscillators) and resultant changes

in activation energy (lower plot, see text). Solid lines, quartjoadratic
double-well potentialyo = 500 cnt?; dashed lines, quartiequadratic
double-well potentialVo = 1500 cn1?; dotted lines, quartic-quadratic
double-well potentialVo = 250 cnt?!; dashed-and-dotted lines, fan
potential (withy = 300 cntl, 4 = 2 amu, andyp = 1 A); dashed-
and-double-dotted lines, quartic potential (with.; = 300 cnt?).

Q) = V2 exp(—llzﬁvo>[l (Ve —

1)\
(1+ /_No)ll( /zﬂvo)] (111.6.4)

Here,lo(X) andl 1(x) are modified Bessel functions. Expressions
for thermodynamic functions resulting from substituting (I11:6.2
4) into (I1.2.10) are very similar to those reported recently by
McClurg et al** These authors applied the Pitz&Bwinn
approximatiof* of (11.2.1) with a correction to the energy of
the zeroth vibrational level to obtain explicit formulas for

Knyazev and Tsang

One obvious immediate application of the described algorithm

and the resulting formulas for specific potentials is in calculating
densities of states and partition functions of molecules with such
degrees of freedom as inversions (double-well) and sterically
restricted vibrations. Currently, these degrees of freedom are
represented in models by harmonic oscillators. The main
drawback of such simplifications is the inadequate description
of the temperature dependencies of partition functiégp@)).
If, for example, the reactant molecule has an inversion degree
of freedom and the transition state does not, this results in a
temperature-dependent error in the ratio of partition functions
and, hence, in the rate constant, which, in turn, yields incorrect
activation energies. Figure 7 illustrates such temperature-
dependent deviations in partition functions and resultant errors
in activation energies for a variety of potentials.

Another potential application of the described algorithm is
in calculating sums of stat&8(E) and partition function€(T)
of transitional modes in variational transition-state theory (e.g.,
see ref 18). A number of methods to evaludlgE) and Q(T)
as functions of the reaction coordinate have been reported. These
methods are based on knowledge of the potential energy surface
(ref 25 and references therein) or on the use of switching
functions (see ref 26 and references therein). The current
algorithm provides a simple and easily automated method of
treating transitional modes applicable if (1) the potential energy
surface is known and (2) degrees of freedom can be assumed
to be separable.
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