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A universal algorithm for the calculation of the density-of-states, partition, and other thermodynamic functions
of internal one-dimensional nonharmonic degrees of freedom is developed and analyzed. The algorithm is
exact in the classical limit and results in analytical formulas for many types of potentials. Quantum effects
are taken into account via the inverse Laplace transform of the classical partition function corrected for quantum
effects by the method of Pitzer and Gwinn. Explicit formulas are reported for a variety of selected potential
types (double-well inversion, quartic oscillator, etc.). An extension of the classical treatment to multidimen-
sional potentials is described.

I. Introduction

Modeling of many classes of chemical reactions requires a
knowledge of the density-of-states, sum-of-states, and partition
functions of the involved molecules. The established approach
is based on creating a model of the molecule consisting of a
collection of harmonic oscillators and free one- and two-
dimensional rotors. The density-of-states and sum-of-states
functions of such an idealized molecule are easily calculated
using, for example, the Beyer-Swinehart algorithm.1,2 The
presence of significantly nonharmonic degrees of freedom such
as hindered rotations, inversions, quartic oscillators, etc. com-
plicates the calculations. If all individual energy levels of a
nonharmonic degree of freedom are known, they can be included
via the Stein-Rabinovitch approach.3 However, in spite of the
existence of efficient algorithms,4 determining individual energy
levels for many types of potentials proves to be impractical since
density-of-states functions are, generally, needed at very high
energies (104-105 cm-1) corresponding to large quantum
numbers.

The problem of determining densities of states of nonhar-
monic degrees of freedom has been recently reviewed by Forst,5

Troe,6 and Ming et al.7 Forst5 developed an algorithm for
computing sums of states for a collection of nonseparable
anharmonic oscillators with known individual energy levels, as
well as a fast approximate algorithm for determining densities
of states via a numerical Laplace transform of the overall
partition function. Algorithms were reported for estimating
classical-limit anharmonic densities of states based on simplified
models of several stretch potentials (Troe6) and on microca-
nonical sampling of the classical phase space (Ming et al.7).
Quasi-classical expressions for density- and sum-of-states
functions were derived for the Morse potential on the basis of
the explicitly known vibrational energy levels (ref 6 and
references therein). The specific case of the one-dimensional
sinusoidally hindered rotor has received much attention (refs
8-12 and references therein). Knyazev et al.11 developed
analytical formulas for the density-of-states and sum-of-states
functions that are exact in the classical approximation. Forst9

reported an algorithm for calculating the density-of-states
function of a system consisting of independent oscillators, free
rotors, and one-dimensional hindered rotors via a numerical
inversion of the overall partition function. In its quantum form,
the algorithm uses the approximation of Truhlar13 to the quantum
partition function of a one-dimensional hindered rotor. Uni-
versal analytical formulas for sums and densities of states that
included corrections for quantum effects based on an inverse
Laplace transform (ILT) of the Pitzer-Gwinn approximation14

to the quantum partition function were recently reported by
Knyazev.8

In the current work, we report a universal algorithm for
calculating densities and sums of states, as well as partition and
thermodynamic functions, for any one-dimensional nonharmonic
degree of freedom. The algorithm is exact in the classical limit
and results in analytical formulas for many types of potentials.
Corrections for quantum effects are introduced via the ILT of
the Pitzer-Gwinn approximation. In section II, the algorithm
is described for the general case of an arbitrary nonharmonic
potential. In section III, several specific cases of nonharmonic
potentials are examined and corresponding analytical formulas
are derived. Implications for chemical kinetics modeling are
discussed in section IV.

II. General Case

The partition function of any system can be considered as a
Laplace transform of the corresponding density-of-states func-
tion F(E) by definition

whereâ ) (kBT)-1 is an inverse reduced temperature andE is
the energy. Thus, provided that the dependence of the partition
function on temperature is known, one can obtain the density-
of-states function by inverse Laplace transform (ILT):

Q(â) ) ∫0

∞
F(E) exp(-âE) dE ) L[F(E)]

F(E) ) L-1[Q(â)]
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II.1. Classical Limit. Densities and Sums of States.In the
classical limit, the partition function of a system with Hamil-
tonianH(p, q) is obtained by an integral over phase space

where p is the momentum andq1 and q2 limit the range of
coordinateq values. Describing the Hamiltonian of a one-
dimensional degree of freedom as

(µ is the reduced mass andV(q) is the potential energy function)
and evaluating the integral over momentump, we obtain

If an arbitrary “reference” value ofq ) q0 is chosen, one can
express potential energy as a function of the “reduced”
coordinateê ) q/q0 and the expression forQCL acquires form

where

is an “effective” rotational constant,Q̃ROT(â) ) [π/(Bâ)]1/2, and

Mathematically, this is equivalent to having two degrees of
freedom, one pseudo-rotation with the partition functionQ̃ROT(â)
and one “shape-related” degree of freedom with the partition
function Q̃SH(â), which is determined by the shape of theV(ê)
potential.

The density-of-states function of pseudo-rotation is given by

If the density-of-states function of the shape-related degree of
freedom,F̃SH(E) ) L-1[Q̃SH(â)], is known, the overall density-
of-states functionFCL(E) can be obtained by a numerical or
analytical convolution:

Determination of theF̃SH(E) Function. The potential energy
profile is divided into several segments with monotonicV(ê)
dependencies (Figure 1). Theseê-variable intervals of the
segments are bound byêmin, êmax, and the extrema of theV(ê)
function at several values ofê. One can now represent the
integral in (II.1.4) as a sum of integrals over the individual
intervals (indexed by 1e i e N)

whereêi(V) is an inverseV(ê) function in theith interval. Again,
the limits of integration overV are determined by the extrema
of V(ê), Vi

min andVi
max.

For each intervali, we define the function

Substituting (II.1.8) into (II.1.7), exchanging integration limits
for intervals where dV(ê)/dê < 0, and extending them from zero
to infinity, we obtain

which is equivalent to a Laplace transform of the [∑i)1
N F̃̃SH

i (V)]
function. Therefore, the density-of-states functionF̃SH(E) )
L-1[Q̃SH(â)] of the shape-related pseudo-degree of freedom is

Figure 1. Upper plot: arbitraryV(ê) potential energy function. Theê
axis is divided into four segments (numbered byi ) 1-4) with
monotonicV(ê) dependencies. Lower plot (segment 2): corresponding
inverseêi(V) function and resultantF̃̃SH

i (V) ) [1/(2π)]‚|dê/dV| depen-
dence (a component of the overallF̃SH(V) dependence, see text).

Q̃SH(â) )
1

2π
∑
i)1

N ∫ dê exp(-âV(ê)) )

1

2π
∑
i)1

N ∫Vi
min(max)
Vi

max(min)

dV (dêi(V)

dV ) exp(-âV) (II.1.7)

F̃̃SH
i (V) ≡ F̃̃SH

i (E) )

{ 1
2π|dêi

dV|, Vi
min < V < Vi

max

0, V e Vi
min; V g Vi

max
(II.1.8)

Q̃SH(â) ) ∑
i)1

N ∫0

∞
dVF̃̃SH

i (V) exp(-âV) )

∫0

∞
dV[∑

i)1

N

F̃̃SH
i (V)] exp(-âV) (II.1.9)

QCL ) 1
h∫-∞

∞
dp∫q1

q2 dp exp(-âH(p, q)) (II.1.1)

H(p, q) ) p2

2µ
+ V(q)

QCL ) 1
h[2πµ

â ]1/2∫q1

q2 dq exp(-âV(q))

QCL ) [8π3µq0
2

h2â ]1/2
1

2π∫êmin

êmax dê exp(-âV(ê)) )

[ π
Bâ]1/2

1
2π∫êmin

êmax dê exp(-âV(ê)) ) Q̃ROT(â) Q̃SH(â) (II.1.2)

B ) h2

8π2µq0
2

(II.1.3)

Q̃SH(â) ) 1
2π∫êmin

êmax dê exp(-âV(ê)) (II.1.4)

F̃ROT(E) ) 1

xBE
(II.1.5)

FCL(E) ) ∫0

E
F̃ROT(E - ε) F̃SH(ε) dε )

1

xB
∫0

E F̃SH(ε) dε

xE - ε
(II.1.6)
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given by the sum of individualF̃̃SH
i (E) terms, which are, in

turn, determined by the dê/dV derivatives (formula II.1.8):

This (in many cases,analytical) F̃SH(E) dependence can thus
be easily determined for anyV(ê) potential. Then it can be
analytically (preferred) or numerically convoluted (formula
II.1.6) with the “pseudo-rotational” density-of-states function
F̃ROT(E) to yield the overall classicalFCL(E) density-of-states
function.

It is interesting to note that for any potential energy well the
F̃SH(E) function is determined by the energy dependence of the
“width” (the distance between the left and right “walls”) of the
well. This can be shown by a variable transform: ifêi and
êi+1 form the left and right walls of the well, by defining the
width w ) êi+1 - êi and “center”c ) 1/2(êi+1 + êi) one obtains
for the shape-related density-of-states function

which is independent ofc. The same holds for a complex
potential consisting of multiple connected wells. Therefore, any
“tilting” or other distortion of the potential that does not change
the width vs energy dependence will not result in any change
of the classical density-of-state function.

Thermodynamic and Partition Functions.The partition
functionQCL(â) is given by the product ofQ̃ROT(â) andQ̃SH(â).
If the integral in (II.1.4) or (II.1.9) (which is the same) can be
evaluated analytically, the problem of calculatingQCL(â) is
solved. In this case, first and second derivatives ofQ̃SH(â) can
be determined analytically and thermodynamic functions of the
shape-related pseudo-degree of freedom can now be evaluated
via formulas

where NA is Avogadro’s number andR is the universal gas
constant. They can now be combined with the thermodynamic
functions of the “pseudo-rotation” calculated via standard
methods to give the overall thermodynamic functions.

If analytical evaluation ofQ̃SH(â) is impossible, the partition
function and its first and second derivatives needed to calculate
thermodynamic functions via II.1.11-13 can easily be obtained
via numerical integration:

II.2. Correction for Quantum Effects. Partition, Density-
of-States, and Sum-of-States Functions.Pitzer and Gwinn14

suggested that the classical partition function can be corrected
to account for quantum effects via a multiplication by the ratio
of quantum (QQ

HO) to classical (QCL
HO) partition functions of a

corresponding harmonic oscillator (i.e., an oscillator with a
frequency derived from the curvature at the bottom of the
nonharmonic potential):

Isaacson and Truhlar15 have demonstrated that such a correction
for quantum effects can be applied with good accuracy to a
variety of potentials with different functional forms.

Formula II.2.1 can be used to obtain the density-of-states
function via the ILT ofQQ(T). Such an approach to determining
the density-of-states function, however, should be used with
caution, since the approximation of (II.2.1), while describing
the temperature dependence of the quantum partition function
with reasonable accuracy for a variety of systems, is not derived
from any fundamental principles and, therefore, does not have
a physical meaning. It is only a phenomenological expression
providing for a smooth transition from the low-temperature
region on one side, where the ratioQCL/QCL

HO is equal to 1 and
the partition function of a system can be described byQQ

HO,
and the high-temperature region on the other side, whereQQ

HO

approachesQCL
HO and the partition function is well approxi-

mated byQCL. Agreement between the exact partition function
and that given by (II.2.1) can be improved if the exact energies
of the zeroth and first vibrational levels are known. In this case,
QQ

HO can be calculated using a vibrational frequency corre-
sponding to the actual 0f 1 transition, and values of the
partition function relative to the classical potential minimum
can be obtained with higher accuracy by using the exact energy
of the zeroth level.15

For a nonharmonic degree of freedom, three components of
(II.2.1) are obtained as follows:QCL is given by (II.1.2),

where h is Planck’s constant andν is the frequency of the
corresponding harmonic oscillator. Here, the bottom of the
classical potential is taken as an energy reference point for all
partition functions. The density-of-states functionFQ(E) is given
by the ILT of QQ(â):

The sum-of-states functionWQ(E) is given by the expression16

Since the quantum density-of-states function of a harmonic
oscillator

QQ ) QCL

QQ
HO

QCL
HO

(II.2.1)

QCL
HO ) (hνâ)-1, and

QQ
HO ) exp(-1/2hνâ)(1 - exp(-hνâ))-1 (II.2.2)

FQ(E) ) L-1[QCL(â)
QQ

HO(â)

QCL
HO(â)] ) hνL-1[âQCL(â) QQ

HO(â)]

(II.2.3)

WQ(E) ) ∫0

E
FQ(ε) dε ) L-1[QQ(â)

â ] )

hνL-1[QCL(â) QQ
HO(â)] (II.2.4)

F̃SH(E) ) ∑
i)1

N

F̃̃SH
i (E) (II.1.10)

F̃̃i(V) + F̃̃i+1(V) ) 1
2π

dw
dV

internal energy ŨSH ) -NA

d ln Q̃SH(â)

dâ
(II.1.11)

heat capacity C̃V,SH ) Râ2
d2 ln Q̃SH(â)

dâ2
(II.1.12)

entropy S̃SH ) R(ln Q̃SH(â) - â
d ln Q̃SH(â)

dâ ) (II.1.13)

Q̃SH(â) ) ∫0

∞
F̃SH(E)e-âE dE

d Q̃SH(â)

dâ
) -∫0

∞
EF̃SH(E) e-âE dE (II.1.14)

d2 Q̃SH(â)

dâ2
) ∫0

∞
E2F̃SH(E) e-âE dE
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whereN(E) ) int([E/(hν)] - (1/2)) (int(x) means integer part),
we can obtain via the convolution formula

For any functionF(â) the ILT of âF(â) is given by16,17

as can be checked via integration by parts. Using this, (II.2.5)
for FQ

HO(E), and the convolution formula, we can obtain for the
quantum density-of-states function

whereF′CL(E) is the first derivative of theFCL(E) function.
In most practical applications, in calculating densities of states

and performing numerical manipulations of related functions
(e.g., solving master equation18 for unimolecular reactions), the
energy scale is divided into an array of energy bins of small
size, and continuous functions are replaced with arrays. In such
cases, to avoid problems associated with singularities ofFCL(E)
andδ-functions in (II.2.7), it is advisable to calculate the value
of the density-of-states function for each energy bin as an
increment of theW(E) function between the upper and lower
borders of the bin divided by the bin width:

Since the classical partition function is given byQCL(â) )
Q̃ROT(â) Q̃SH(â), one may choose to apply the above “quantum
correction” formalism to the shape-related pseudo-degree of
freedom first and then include the pseudo-rotationalQ̃ROT(â)
and F̃ROT(E) functions.

For some forms of potential,FCL(E) may decrease with
energy. This will result in nonmonotonic behavior ofWQ(E)
obtained from (II.2.6). Such nonmonotonic behavior corre-
sponds to negative values of the density-of-states functionFQ(E),
which is physically meaningless. Fortunately, these negative
values (an artifact caused by applying ILT to the Pitzer-Gwinn
approximation) are usually eliminated from the overall density-
of-states function of a molecule if rotational degrees of freedom
are included by a convolution. If such rotational degrees of
freedom are not present, one needs to correct theWQ(E)
dependence by smoothing or “straightening” the sections of
WQ(E) with negativeFQ(E) (see ref 8 for an example of using
classical expression for smoothing at high energies). One can
note that the general large-scale behavior of classical (WCL(E))
and quantum (WQ(E)) sum-of-states functions are very similar
since calculating the sum in (III.2.6) is almost identical to

integrating the classical density of states with a very large step
size (step size equal tohν).

The above overall algorithm for obtaining the density-of-states
and sum-of-states function is presented in Figure 2 in a
schematic form. The algorithm for calculating the partition
function is shown in Figure 3.

Thermodynamic Functions.The partition function corrected
for quantum effects is given (II.2.1) by

Figure 2. Schematic algorithm for calculating a density-of-states
function (section II).

Figure 3. Schematic algorithm for calculating partition and thermo-
dynamic functions (section II).

FQ
HO(E) ) L-1[QQ

HO(â)] ) ∑
i)0

N(E)

δ(E - hν(i + 1/2)) (II.2.5)

WQ(E) ) hν∫0

E
FCL(E - x)∑

i)0

N(x)

δ(x - hν(i + 1/2)) dx )

hν∑
i)0

N(E)

FCL(E - hν(i + 1/2)) (II.2.6)

L-1[âF(â)] ) f′(E) + f(0) δ(E), wheref(E) ) L-1[F(â)]

FQ(E) ) hν∫0

E
[F′CL(E - x) + δ(E - x) FCL(0)] ×

∑
i)0

N(x)

δ(x - hν(i + 1/2)) dx ) hν∑
i)0

N(E)

[F′CL(E - hν(i + 1/2)) +

FCL(0) δ(E - hν(i + 1/2))] (II.2.7)

FQ(E) )
δWQ(E)

δE
(II.2.8)
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In this formula the choice of reference energy conforms to that
made in calculatingQQ

HO(â). Using the additivity property that
follows from formula II.2.9, thermodynamic functions can be
calculated by combining those of (1) a harmonic oscillator with
partition functionQQ

HO(â), (2) a pseudo-rotation with partition
function Q̃ROT(â), and (3) another pseudo-degree of freedom
described by the “partition function” [hνâQ̃SH(â)]. Thermo-
dynamic functions of the harmonic oscillator (UHO(â), SHO(â),
Cv

HO(â)) and pseudo-rotation (ŨROT(â), S̃ROT(â), C̃V,ROT(â))
can be obtained by standard methods.19 Noting that

and expressing thermodynamic functions via the partition
function derivatives (see formulas II.1.11-13), we obtain for
the one-dimensional degree of freedom under consideration

The shape-related partition functionQ̃SH(â) and its first and
second derivatives,Q̃′SH(â) andQ̃′′SH(â), can be obtained either
analytically or numerically (II.1.14).

This algorithm for calculating thermodynamic functions is
presented in Figure 3 in a schematic form.

II.3. Extension of Classical Treatment to the Multidi-
mensional Case. Let us consider anN-dimensional system
described by a Hamiltonian with separable kinetic energy part

where V(q) is an infinitely bound potential such that lim|q|f∞V(q)
) ∞ (p andq are multidimensional generalized momentum and
coordinate). By choosing arbitrary “reference” vectorq0,
defining the reduced coordinateq̃ (q̃i ) qi/q0i, V(q̃) ) V(q)),
and performing an integration over momenta in a way similar
to that used in section II.1, we obtain for the multidimensional
classical partition function

whereQ̃ROT(â) is a rotational partition function of a collection
of N one-dimensional pseudo-rotors with rotational constants
Bi given by (II.1.3), and shape-related partition functionQ̃SH(â)
is given by

We now define a generalized energy-dependent width of the
potential energy functionV(q̃)

where integration is performed from-∞ to +∞ in all dimen-
sions andH(x) is a Heaviside step function. Thisw(E) function
can also be described as an area of the reduced coordinate space
contained inside the potential well at a particular energyE. The
first derivative of thew(E) function is given by

Defining

and using (II.3.5), we see that

Therefore, the functionF̃SH(E) of (II.3.6) determined by the
dependence of the generalized width of potential (i.e., the
coordinate area bound by the potential energy well at a particular
energy) on energy has the meaning of the density-of-states
function of the shape-related pseudo-degree of freedom, i.e.,
the same as in the one-dimensional case (section II.1).

Thus, in a multidimensional case, the classical density-of-
states function can be determined by a method that follows the
same general algorithm described in section II.1. First, one
determines (in many cases, this can be done analytically) the
F̃SH(E) function via the derivative of thew(E) dependence.
Second, to obtain the overall classical density of states, the
F̃SH(E) function is convoluted (analytically or numerically, first
part of formula II.1.6) with the density-of-states function of
pseudo-rotationsF̃ROT(E), which can be found using standard
formulas (see, for example, ref 18).

III. Specific Cases of Individual Nonharmonic Potentials

In this section, analytical formulas forF̃SH(E), FCL(E), and
Q̃SH(â) are derived for several types of nonharmonic potentials.

QQ(â) ) QCL(â)
QQ

HO(â)

QCL
HO(â)

) hνâQ̃SH(â) Q̃ROT(â) QQ
HO(â)

(II.2.9)

d
dâ

(ln[hνâQ̃SH(â)]) ) 1
â

+
Q̃′SH(â)

Q̃SH(â)

d2

dâ2
(ln[hνâQ̃SH(â)]) )

Q̃′′SH(â)

Q̃SH(â)
- (Q̃′SH(â)

Q̃SH(â))2

- 1

â2

internal energy

U(â) ) ŨROT(â) + UHO(â) - NA{1
â

+
Q̃′SH(â)

Q̃SH(â)}
entropy S(â) ) S̃ROT(â) + SHO(â) +

R{ln[hνâQ̃SH(â)] - 1 - â
Q̃′SH(â)

Q̃SH(â)} (II.2.10)

heat capacity CV(â) ) C̃V,ROT(â) + CV
HO(â) +

R{â2
Q̃′′SH(â)

Q̃SH(â)
- â2(Q̃′SH(â)

Q̃SH(â))2

- 1}

H(p, q) ) ∑
i)1

N pi
2

2µi

+ V(q) (II.3.1)

QCL(â) )
1

hN
∫ dp dq exp(-â H(p, q)) )

∏
i)1

N [ π

Biâ]1/2 1

2π
∫ dq̃ exp(-âV(q̃)) )

Q̃ROT(â) Q̃SH(â) (II.3.2)

Q̃SH(â) ) 1
2π∫ dq̃ exp(-âV(q̃)) (II.3.3)

w(E) ) ∫H(E - V(q̃)) dq̃ (II.3.4)

dw(E)
dE

) ∫δ(E - V(q̃)) dq̃ (II.3.5)

F̃SH(E) ) 1
2π

dw(E)
dE

(II.3.6)

∫0

E
F̃SH(ε) exp(-âε) dε ) 1

2π∫0

Edw(ε)
dε

exp(-âε) dε )

1
2π∫0

E
dε∫ dq̃ δ(ε - V(q̃)) exp(-âε) )

1
2π∫ dq̃ exp(-âV(q̃)) ) Q̃SH(â) (II.3.7)
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In most cases, these formulas involve special functions that can
be easily computed using available numerical methods (e.g.,
ref 20).

III.1. Quartic -Quadratic Double-Well Potential. A
potential energy function of the typeV(q) ) aq4 - bq2 (a, b >
0) is frequently used in spectroscopy to describe inversion and
ring-puckering.21 Expressed via parametersV0 (the barrier
between two connected wells) andq0 (coordinate of energy
minimum), the potential energy function acquires the form
(Figure 4)

Since the potential is symmetric, only theê > 0 region will be
considered and the obtained derivatives will be multiplied by 2
to calculateF̃SH

i (E). Two branches ofê(V) and the corre-
spondingV(ê) dependencies need to be considered:

Taking the derivatives, we obtain for theF̃SH(E) function

whereH(x) is a Heaviside step function. If the energy scale is
divided into an array of energy bins, for each energy binF̃SH(E)
is best calculated (see formula II.2.8) as a increment of the
corresponding sum-of-states function

The overall classical density-of-states function can be calculated
via an analytical convolution (formula II.1.6)

where the rotational constantB of the pseudo-rotation (formula
II.1.3) is related toV0 and the harmonic frequencyν derived
from the curvature at the bottom of the potential via the
expression

Using (III.1.2) and substitutionst ) (x/V0)1/2, æ ) (ε)1/2 )
(E/V0)1/2, one can obtain for theFCL(E) function

These integrals can be evaluated separately foræ < 1 andæ >
1 regions giving (Gradshteyn and Ryzhik,22 eq 3.131)

whereF(x, y) is an elliptic integral of the first kind (as defined
in ref 22). This functional form of the classical density-of-
states function is illustrated in Figure 4.

Unfortunately, an analytical formula forQ̃SH(â) cannot be
derived. Therefore, one needs to use numerical integration
(formula II.1.14) to obtain the partition function derivatives and
thermodynamic functions.

The first 16 exact energy levels of the quartic-quadratic
double-well potential have been tabulated by Laane23 for a wide
variety of potential parameters. These tabulated values are used

Figure 4. Upper plot: quartic-quadratic (formula III.1.1, solid line)
and cos-tan2 (formula III.2.1,γ ) 1, dashed line) potentials.X-axis:
ê for quartic-quadratic and2ê/π for cos-tan2 potentials (different
scales are chosen to yield the same curvature at the potential bottom).
Lower plot: Classical density-of-states functions relative to that of a
corresponding single harmonic oscillator. Lines are the same as in the
upper plot.

V ) V0(ê
2 - 1)2, ê ) q

q0
(III.1.1)

1. i ) 1. 0< ê < 1, ê1(V) ) x1 - xV
V0

,

0 < V(ê) < V0

2. i ) 2. ê > 1, ê2(V) ) x1 + xV
V0

, 0 < V(ê)

F̃SH(E) ) F̃̃SH
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here to compare the results of the current approach with the
exactW(E) dependence (Figure 5). The sum-of-states function,
W(E), is chosen for the comparison because the density-of-states
function (F(E)) is discrete in the exact quantum case (a sequence
of δ-functions), is continuous in the classical approximation,
and has both discrete and continuous components in the classical
approximation corrected for quantum effects via the ILT of the
Pitzer-Gwinn approximation (section II.2, eq II.2.7). At the
same time,W(E) is always continuous, which simplifies the
comparison. As can be seen from Figure 5, both the classical
(WCL(E)) and classical corrected for quantum effects (WQ(E))
functions follow the general large-scaleW(E) dependence
obtained from exact energy levels.WQ(E) provides a better
(almost exact) stepwise representation at low energies but
displays nonphysical behavior (nonmonotonic growth) at higher
energies. Methods of correcting such nonphysicalWQ(E)
dependencies are discussed in section II.2 and ref 8.

III.2. cos-tan2 Double-Well Potential. We propose here
another formula to describe a potential energy function of a
double-well system

whereê ) q/q0 andq0 is the coordinate of the potential energy
minimum. The potential described by (III.2.1) (Figure 4)
depends on three parameters (V0, q0, andγ) and thus is more
flexible than the quartic-quadratic potential of (III.1.1). Also,

its range of reduced coordinateê is confined to the interval|ê|
< γ + 1, which is more realistic than an unrestricted potential
since such degrees of freedom as inversion and ring-puckering
are necessarily restricted in coordinate.

Following the same general path of derivation as in the case
of quartic-quadratic potential

Taking the derivatives, we obtain for theF̃SH(E) function

where H(x) is a Heaviside step function. For the classical
density-of-states function we can obtain (ref 22, eqs 3.131 and
3.147)

where the rotational constantB of the pseudo-rotation (II.1.3)
is related toV0 and the harmonic frequencyν derived from the
curvature at the bottom of the potential via the expression
(BV0)1/2 ) (hν)/π.

The corresponding classical sum-of-states function is given
by

HereK(x) andE(x) are complete elliptic integrals of the first
and second kind, respectively (as defined in ref 22). This
functional form of the classical density-of-states function
(III.2.3) is shown in Figure 4 together with that obtained for
the quartic-quadratic potential.

Figure 5. Plot of the sum-of-states functions for the quartic-quadratic
potential obtained at different levels of approximation. The classical
approximation (WCL(E), smooth curve, lower line) and classical
corrected for quantum effects via the ILT of Pitzer-Gwinn approxima-
tion (WQ(E), complex nonmonotonic dependence, upper line) are
compared with the exactW(E) dependence obtained from the tabulated
energy levels reported by Laane23 (stepwise lines superimposed over
both upper and lower lines). The values ofWQ(E) and the corresponding
exact W(E) function are shifted upward by 5 units to avoid plot
congestion. Parameters of the quartic-quadratic oscillator used:V0 )
1102 cm-1, q0 ) 1 Å, µ ) 3.3 amu. The value ofhν ) 283.1 cm-1

used to calculateWQ(E) via (II.2.6) was obtained from the tabulation
of Laane23 (energy of the 0f 1 transition).
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2
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An expression for the partition function (and its derivatives)
of the shape-related pseudo-degree of freedom can be derived
analytically by taking integrals in (II.1.14) (ref 22, eqs 3.364.1
and 3.466.1)

whereI0(x) andI1(x) are modified Bessel functions and erfc(x)
is the complementary error function.

The overall classical partition function can thus be expressed
as

III.3. Single-Well Quadratic -Quartic Potential. A po-
tential energy function of the typeV(q) ) aq4 + bq2 (a, b > 0)
is used in spectroscopy to describe anharmonicity of vibrational
modes. ThisV(q) dependence can also be written in the
following forms

whereκ ) Rk2. Defining q0 ) [2/(Rk)]1/2 ) [(2k)/κ]1/2 andê
) q/q0 we obtain

Inverting this formula we obtain (onlyê > 0 needs to be
considered since the potential is symmetric)

The overall classical density-of-states function is given by (see
convolution formula II.1.6)

The integral can be evaluated (ref 22, eq 3.131.5) by using the
substitutiont ) (1 + 4Rx)1/2 to obtain

where the rotational constantB of the pseudo-rotation (II.1.3)
is related toR and the harmonic frequency derived from the
curvature at the bottom of the potentialν via the expressionB
) [R(hν)2]/4.

An expression for the overall partition function and that of
the shape-related pseudo-degree of freedom can be derived
analytically by taking the integral in (II.1.4) (see ref 22, eq
3.469.1)

In the limiting cases of low energies, low temperatures, and
smallR, (III.3.4-III.3.6) reduce to the classical density-of-states
and partition functions of a harmonic oscillator

III.4. Quartic Oscillator. The potential energy function of
a quartic oscillator (Figure 6) is given by

where the dimensionless coordinateê ) q/q0 (q0 is chosen
arbitrarily). One thus obtains

(ref 22, eq 3.152.3) whereB is given by (II.1.3),µ is the reduced
mass, andK(x) is complete elliptic integral of the first kind (as
defined in ref 22). This energy dependence of the classical
density-of-states function is illustrated in Figure 6. The sum-
of-states function equals

Partition functions are obtained by Laplace transform of (III.4.2)
and multiplication byQ̃ROT(â)
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The parameters in formulas III.4.3-6 can be expressed via the
frequencyν0f1 of the 0f 1 transition (which, for a particular
molecule, may be known from spectroscopic data) using the
parametrized energy levels calculated by Laane23 (∆E0f1 )
2.7393b1/3p4/3(2µ)-2/3)

III.5. tan 2 Oscillator. The one-dimensional potential
energy function of the form (Figure 6)

where V0 ) (2kq0
2)/π2 and ê ) q/q0 reduces to a harmonic

oscillator with potentialV(q) ) (kq2)/2 at low values ofq (and,
correspondingly, low energies). However, unlike that of a
purely harmonic potential, the function of (III.5.1) is restricted
in the q coordinate (q < q0, ê < 1), which results in more
sparsely placed energy levels at high energies. Such potential
may be suitable for describing certain types of bending
vibrations, which, being almost harmonic at low energies, are
restricted in coordinate owing to steric hindrances.

Following the route of derivations described in section II (and
noting that formulas are very similar to those used for the second
part of the cos-tan2 potential, section III.2), we obtain

(ν is the frequency derived from the curvature at the bottom of
the potential), or

The FCL(E) dependence is illustrated in Figure 6.
III.6. Sinusoidally Hindered Rotor. Formulas for the

partition, density-of-states, and sum-of-states functions of a one-
dimensional rotor hindered by a sinusoidal potential

have been reported before.8,11,14 For completeness, we present
here expressions forQ̃SH(â), Q̃′SH(â), and Q̃′′SH(â), needed to
calculate thermodynamic functions:

Figure 6. Upper plot: harmonic (solid line), tan2 (formula III.5.1,
dashed line), and quartic (formula III.4.1, dashed-and-dotted line)
potentials. Parameters of individual potentials are selected to yield the
same frequency (ν ) 300 cm-1) derived from the curvature at the
potential bottom (ν0f1 ) 300 cm-1 for the quartic potential). For the
tan2 potential,q0 ) 1. Lower plot: Classical density-of-states functions
relative to that of a corresponding harmonic oscillator. Lines are the
same as in the upper plot.
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Here,I0(x) andI1(x) are modified Bessel functions. Expressions
for thermodynamic functions resulting from substituting (III.6.2-
4) into (II.2.10) are very similar to those reported recently by
McClurg et al.24 These authors applied the Pitzer-Gwinn
approximation14 of (II.2.1) with a correction to the energy of
the zeroth vibrational level to obtain explicit formulas for
thermodynamic functions of a hindered rotor. One should note,
however, that the expression for internal energy given by
McClurg et al. (formula 35 of ref 24) contains a mistakesthe
sign between the two terms in the figure brackets must be minus
instead of plus. The Pitzer-Gwinn approximation, apparently,
was derived by McClurg et al. independently (although ref 14
is among those cited in ref 24, it is not mentioned as the original
source of the approximating formula).

IV. Discussion

The algorithm described solves the problem of calculating
densities and sums of states exactly in the classical approxima-
tion. The critical step of the algorithm is obtaining theF̃SH(E)
function. In most cases, this can be done analytically (e.g., see
section III). Even if an analytical expression cannot be derived,
F̃SH(E) can be easily obtained as a numerical array by solving
the transcendental equationV ) V(ê) to obtain the ê(V)
dependence and dê/dV ) [dV(ê)/dê]-1 function (the derivative
can be taken analytically) for each of the intervals with
monotonicV(ê) dependence, as described in section II.

One obvious immediate application of the described algorithm
and the resulting formulas for specific potentials is in calculating
densities of states and partition functions of molecules with such
degrees of freedom as inversions (double-well) and sterically
restricted vibrations. Currently, these degrees of freedom are
represented in models by harmonic oscillators. The main
drawback of such simplifications is the inadequate description
of the temperature dependencies of partition functions (Q(T)).
If, for example, the reactant molecule has an inversion degree
of freedom and the transition state does not, this results in a
temperature-dependent error in the ratio of partition functions
and, hence, in the rate constant, which, in turn, yields incorrect
activation energies. Figure 7 illustrates such temperature-
dependent deviations in partition functions and resultant errors
in activation energies for a variety of potentials.

Another potential application of the described algorithm is
in calculating sums of statesW(E) and partition functionsQ(T)
of transitional modes in variational transition-state theory (e.g.,
see ref 18). A number of methods to evaluateW(E) andQ(T)
as functions of the reaction coordinate have been reported. These
methods are based on knowledge of the potential energy surface
(ref 25 and references therein) or on the use of switching
functions (see ref 26 and references therein). The current
algorithm provides a simple and easily automated method of
treating transitional modes applicable if (1) the potential energy
surface is known and (2) degrees of freedom can be assumed
to be separable.
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Figure 7. Temperature dependencies of partition functions (upper plot,
relative to corresponding harmonic oscillators) and resultant changes
in activation energy (lower plot, see text). Solid lines, quartic-quadratic
double-well potential,V0 ) 500 cm-1; dashed lines, quartic-quadratic
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